Home
Class 12
MATHS
If P=[(2,-1),(5,-3)] and P^n = 5I-8P the...

If `P=[(2,-1),(5,-3)] and P^n = 5I-8P` then value of n is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that \( P^n = 5I - 8P \), where \( P = \begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix} \) and \( I \) is the identity matrix of order 2. ### Step 1: Calculate \( 5I - 8P \) First, we calculate \( 5I \) and \( 8P \). The identity matrix \( I \) of order 2 is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Now, calculate \( 5I \): \[ 5I = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] Next, calculate \( 8P \): \[ 8P = 8 \begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} 16 & -8 \\ 40 & -24 \end{pmatrix} \] Now, we find \( 5I - 8P \): \[ 5I - 8P = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{pmatrix} 16 & -8 \\ 40 & -24 \end{pmatrix} = \begin{pmatrix} 5 - 16 & 0 - (-8) \\ 0 - 40 & 5 - (-24) \end{pmatrix} \] \[ = \begin{pmatrix} -11 & 8 \\ -40 & 29 \end{pmatrix} \] ### Step 2: Calculate \( P^2 \) Next, we calculate \( P^2 \): \[ P^2 = P \cdot P = \begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + (-1) \cdot 5 = 4 - 5 = -1 \) - First row, second column: \( 2 \cdot (-1) + (-1) \cdot (-3) = -2 + 3 = 1 \) - Second row, first column: \( 5 \cdot 2 + (-3) \cdot 5 = 10 - 15 = -5 \) - Second row, second column: \( 5 \cdot (-1) + (-3) \cdot (-3) = -5 + 9 = 4 \) Thus, \[ P^2 = \begin{pmatrix} -1 & 1 \\ -5 & 4 \end{pmatrix} \] ### Step 3: Calculate \( P^4 \) Now, we calculate \( P^4 = P^2 \cdot P^2 \): \[ P^4 = \begin{pmatrix} -1 & 1 \\ -5 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ -5 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( -1 \cdot (-1) + 1 \cdot (-5) = 1 - 5 = -4 \) - First row, second column: \( -1 \cdot 1 + 1 \cdot 4 = -1 + 4 = 3 \) - Second row, first column: \( -5 \cdot (-1) + 4 \cdot (-5) = 5 - 20 = -15 \) - Second row, second column: \( -5 \cdot 1 + 4 \cdot 4 = -5 + 16 = 11 \) Thus, \[ P^4 = \begin{pmatrix} -4 & 3 \\ -15 & 11 \end{pmatrix} \] ### Step 4: Calculate \( P^6 \) Next, we calculate \( P^6 = P^4 \cdot P^2 \): \[ P^6 = \begin{pmatrix} -4 & 3 \\ -15 & 11 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ -5 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( -4 \cdot (-1) + 3 \cdot (-5) = 4 - 15 = -11 \) - First row, second column: \( -4 \cdot 1 + 3 \cdot 4 = -4 + 12 = 8 \) - Second row, first column: \( -15 \cdot (-1) + 11 \cdot (-5) = 15 - 55 = -40 \) - Second row, second column: \( -15 \cdot 1 + 11 \cdot 4 = -15 + 44 = 29 \) Thus, \[ P^6 = \begin{pmatrix} -11 & 8 \\ -40 & 29 \end{pmatrix} \] ### Step 5: Compare \( P^6 \) with \( 5I - 8P \) Now, we compare \( P^6 \) with \( 5I - 8P \): \[ P^6 = \begin{pmatrix} -11 & 8 \\ -40 & 29 \end{pmatrix} \quad \text{and} \quad 5I - 8P = \begin{pmatrix} -11 & 8 \\ -40 & 29 \end{pmatrix} \] Since they are equal, we have: \[ P^6 = 5I - 8P \] ### Conclusion Thus, the value of \( n \) is \( 6 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I be an identity matrix of order 2 xx 2 and P=[{:(,2,-1),(,5,-3):}] . Then the value of n in N for which P^(n)=5I-8P is equal to .........

If 4P(n,3)=5P(n-1,3) then value of n is

If P(n-1,3)+P(n+1,3)=(5)/(12) then value of n is

If (p/q)^(n-1)=(q/p)^(n-3) , then the value of n is

If P(n,5):P(n,3)=2:1 find n

If p=sum_(p=1)^(32)(3p+2)(sum_(q=1)^(10)(sin""(2qpi)/(11)-icos""(2qpi)/(11)))^(p) , where i=sqrt(-1) and if (1+i)P=n(n!),n in N, then the value of n is

If ""^(2n+1)P_(n-1) : ""^(2n-1)P_(n) =3 :5 the possible value of n will be :

If ""^(n)P_(5)=9times^(n-1)P_(4), then the value of n is