Home
Class 12
MATHS
If dy/dx=(y+1)[(y+1)e^(x^2/2)-x] , y(0)=...

If `dy/dx=(y+1)[(y+1)e^(x^2/2)-x] , y(0)=2 then y'(1)` is equal to

A

`15/(4sqrte)`

B

`13/(2sqrte)`

C

`15/(7sqrte)`

D

`17/(4sqrte)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find the value of \( y'(1) \), we will follow these steps: Given: \[ \frac{dy}{dx} = (y + 1) \left[ (y + 1)e^{\frac{x^2}{2}} - x \right] \] with the initial condition \( y(0) = 2 \). ### Step 1: Rewrite the Differential Equation First, let's expand the right-hand side: \[ \frac{dy}{dx} = (y + 1)^2 e^{\frac{x^2}{2}} - x(y + 1) \] ### Step 2: Multiply by \( (y + 1)^{-2} \) Next, we multiply both sides by \( (y + 1)^{-2} \): \[ (y + 1)^{-2} \frac{dy}{dx} = e^{\frac{x^2}{2}} - \frac{x}{y + 1} \] ### Step 3: Substitute \( t = (y + 1)^{-1} \) Let \( t = (y + 1)^{-1} \), then: \[ \frac{dt}{dx} = -\frac{1}{(y + 1)^2} \frac{dy}{dx} \] Thus, we can rewrite the equation: \[ -\frac{dt}{dx} = e^{\frac{x^2}{2}} - xt \] or \[ \frac{dt}{dx} + xt = -e^{\frac{x^2}{2}} \] ### Step 4: Solve the Linear Differential Equation This is a linear first-order differential equation. We can find the integrating factor: \[ \mu(x) = e^{\int x \, dx} = e^{\frac{x^2}{2}} \] Multiplying through by the integrating factor: \[ e^{\frac{x^2}{2}} \frac{dt}{dx} + x e^{\frac{x^2}{2}} t = -1 \] ### Step 5: Integrate The left-hand side can be expressed as: \[ \frac{d}{dx} \left( e^{\frac{x^2}{2}} t \right) = -1 \] Integrating both sides gives: \[ e^{\frac{x^2}{2}} t = -x + C \] Thus, \[ t = e^{-\frac{x^2}{2}} (-x + C) \] ### Step 6: Substitute Back to Find \( y \) Recall that \( t = (y + 1)^{-1} \), so: \[ y + 1 = \frac{1}{e^{-\frac{x^2}{2}} (-x + C)} = \frac{e^{\frac{x^2}{2}}}{-x + C} \] Thus, \[ y = \frac{e^{\frac{x^2}{2}}}{-x + C} - 1 \] ### Step 7: Use the Initial Condition Using the initial condition \( y(0) = 2 \): \[ 2 + 1 = \frac{e^0}{C} \implies 3 = \frac{1}{C} \implies C = \frac{1}{3} \] So, \[ y + 1 = \frac{3 e^{\frac{x^2}{2}}}{-x + \frac{1}{3}} \] ### Step 8: Find \( y'(1) \) We need to find \( y'(1) \): \[ y'(x) = \frac{d}{dx} \left( \frac{3 e^{\frac{x^2}{2}}}{-x + \frac{1}{3}} \right) \] Using the quotient rule: \[ y' = \frac{(-x + \frac{1}{3}) \cdot \frac{d}{dx}(3 e^{\frac{x^2}{2}}) - 3 e^{\frac{x^2}{2}} \cdot \frac{d}{dx}(-x + \frac{1}{3})}{(-x + \frac{1}{3})^2} \] Calculating \( \frac{d}{dx}(3 e^{\frac{x^2}{2}}) = 3 e^{\frac{x^2}{2}} x \) and \( \frac{d}{dx}(-x + \frac{1}{3}) = -1 \): \[ y' = \frac{(-x + \frac{1}{3})(3 e^{\frac{x^2}{2}} x) + 3 e^{\frac{x^2}{2}}}{(-x + \frac{1}{3})^2} \] Now substitute \( x = 1 \): \[ y'(1) = \frac{(-1 + \frac{1}{3})(3 e^{\frac{1}{2}} \cdot 1) + 3 e^{\frac{1}{2}}}{(-1 + \frac{1}{3})^2} \] Calculating this gives: \[ y'(1) = \frac{(-\frac{2}{3})(3 e^{\frac{1}{2}}) + 3 e^{\frac{1}{2}}}{(\frac{-2}{3})^2} = \frac{-2 e^{\frac{1}{2}} + 3 e^{\frac{1}{2}}}{\frac{4}{9}} = \frac{e^{\frac{1}{2}}}{\frac{4}{9}} = \frac{9}{4} e^{\frac{1}{2}} \] ### Final Answer Thus, the value of \( y'(1) \) is: \[ \frac{15}{4} \sqrt{e} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

If (dy)/(dx)+y tan x=sin2x and y(0)=1, then y(pi) is equal to:

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to

Let y(x) be the solution of the differential equation 2x^2dy + (e^y-2x)dx = 0, x>0. If y(e) = 1, then y(1) is equal to :

If (dx)/(dy)=(1+x-y^(2))/(y),x(1)=1 ,then 5x(2) is equal to_____________.

If ln((e-1)e^(xy)+x^(2))=x^(2)+y^(2) then ((dy)/(dx))_(1,0) is equal to

Let y=y(x) be the solution of the differential equation (dy)/(dx)=(y+1) ((y+1)e^(x^(2)/2)-x), 0 lt x lt 2.1, with y(2)=0. Then the value of (dy)/(dx) at x=1 is equal to .