Home
Class 12
MATHS
f(x)={((Sin(a+1)x+Sin2x)/(2x),,x lt 0),(...

`f(x)={((Sin(a+1)x+Sin2x)/(2x),,x lt 0),(b,,x=0),((sqrt(x-bx^3)-sqrtx)/(bx^(5/2) ), , xgt0):}` ,`f(x)` is a continous at `x=0` then `abs(a+b)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \(a\) and \(b\) such that the function \(f(x)\) is continuous at \(x = 0\), we need to analyze the left-hand limit (LHL) and right-hand limit (RHL) of \(f(x)\) as \(x\) approaches 0. ### Step 1: Calculate the Left-Hand Limit (LHL) For \(x < 0\), the function is given by: \[ f(x) = \frac{\sin((a+1)x) + \sin(2x)}{2x} \] We need to find: \[ \lim_{x \to 0^-} f(x) \] Using the limit properties, we can separate the terms: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left( \frac{\sin((a+1)x)}{2x} + \frac{\sin(2x)}{2x} \right) \] Using the fact that \(\lim_{x \to 0} \frac{\sin(kx)}{kx} = 1\), we can rewrite: \[ \lim_{x \to 0^-} \frac{\sin((a+1)x)}{2x} = \frac{(a+1)}{2} \quad \text{and} \quad \lim_{x \to 0^-} \frac{\sin(2x)}{2x} = 1 \] Thus, \[ \lim_{x \to 0^-} f(x) = \frac{(a+1)}{2} + 1 = \frac{(a+1) + 2}{2} = \frac{a + 3}{2} \] ### Step 2: Calculate the Right-Hand Limit (RHL) For \(x > 0\), the function is given by: \[ f(x) = \frac{\sqrt{x - bx^3} - \sqrt{x}}{bx^{5/2}} \] We need to find: \[ \lim_{x \to 0^+} f(x) \] Factoring out \(\sqrt{x}\) from the numerator: \[ = \frac{\sqrt{x(1 - bx^2)} - \sqrt{x}}{bx^{5/2}} = \frac{\sqrt{x}(\sqrt{1 - bx^2} - 1)}{bx^{5/2}} = \frac{\sqrt{1 - bx^2} - 1}{b x^2} \] To evaluate this limit, we rationalize the numerator: \[ \lim_{x \to 0^+} \frac{(\sqrt{1 - bx^2} - 1)(\sqrt{1 - bx^2} + 1)}{b x^2 (\sqrt{1 - bx^2} + 1)} = \lim_{x \to 0^+} \frac{-bx^2}{b x^2 (\sqrt{1 - bx^2} + 1)} = \lim_{x \to 0^+} \frac{-1}{\sqrt{1 - bx^2} + 1} \] As \(x \to 0\), \(\sqrt{1 - bx^2} \to 1\): \[ \lim_{x \to 0^+} f(x) = \frac{-1}{1 + 1} = -\frac{1}{2} \] ### Step 3: Set the Limits Equal for Continuity For \(f(x)\) to be continuous at \(x = 0\): \[ \lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x) \] This gives us: \[ \frac{a + 3}{2} = b = -\frac{1}{2} \] From \(b = -\frac{1}{2}\): \[ \frac{a + 3}{2} = -\frac{1}{2} \] Multiplying both sides by 2: \[ a + 3 = -1 \implies a = -4 \] ### Step 4: Calculate \(|a + b|\) Now we have: \[ a = -4, \quad b = -\frac{1}{2} \] Thus, \[ a + b = -4 - \frac{1}{2} = -\frac{8}{2} - \frac{1}{2} = -\frac{9}{2} \] Taking the absolute value: \[ |a + b| = \left| -\frac{9}{2} \right| = \frac{9}{2} \] ### Final Answer \[ \boxed{\frac{9}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:((sin(a+1)x+sinx)/(x)",",xlt0),(c",",x=0),((sqrt(x+bx^(2)))/(bx^((3)/(2)))",",xgt0):} If f(x) is continous at x = 0, then

Let f: R to R be a function defined as f(x)={(,(sin (a+1)x+sin 2x)/(2x), if x lt 0),(, b, if x=0), (,(sqrt(x+bx^(3))-sqrtx)/(bx^(5/2)), if x gt 0):} If f is continuous at x=0 then the value of a+b is equal to :

if f(x)={{:((sin(p+1)x+sinx)/(x),xlt0),(x,x=0),((sqrt(x^(2)+x)-sqrt(x))/(x^(3//2)),xgt0):} is continuous at x=0 then (p,q) is

The values of a,b and c which make the function f(x)={{:(("sin"(a+1)x+"sinx")/(x),xlt0),(C,x=0),(sqrt(x+bx^(2)-sqrt("x"))/(b"x"^(3//2)),"x"gt0):} continuous at x=0 are

If f(x) = {{:(sin1/x, x ne 0),(k, x =0):} , is continous at x=0, then k is equal to-

If f(x)={{:((sin(a+1)x+2sinx)/x", "xlt0),(2" ,"x=0),((sqrt(1+bx)-1)/x" ,"xgt0):} is continuous at x = 0, then find the values of 'a' and 'b'.

f(x)= {((sin(a+2)x + sin x)/x, x lt 0), (b, x=0), ((((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0 , find a + 2b .