Home
Class 12
MATHS
sum(k=0)^10 (2^k+3)^(10)C(k)=alpha*2^10+...

`sum_(k=0)^10 (2^k+3)^(10)C_(k)=alpha*2^10+beta*3^10` then value of `alpha+beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ \sum_{k=0}^{10} (2^k + 3) \binom{10}{k} \] We can break this sum into two separate parts: \[ \sum_{k=0}^{10} (2^k + 3) \binom{10}{k} = \sum_{k=0}^{10} 2^k \binom{10}{k} + \sum_{k=0}^{10} 3 \binom{10}{k} \] ### Step 1: Evaluate the first sum The first sum is: \[ \sum_{k=0}^{10} 2^k \binom{10}{k} \] This can be simplified using the Binomial Theorem, which states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] Setting \(x = 2\) and \(n = 10\), we have: \[ (1 + 2)^{10} = 3^{10} = \sum_{k=0}^{10} \binom{10}{k} 2^k \] Thus, \[ \sum_{k=0}^{10} 2^k \binom{10}{k} = 3^{10} \] ### Step 2: Evaluate the second sum The second sum is: \[ \sum_{k=0}^{10} 3 \binom{10}{k} \] Since \(3\) is a constant, we can factor it out: \[ 3 \sum_{k=0}^{10} \binom{10}{k} \] Using the Binomial Theorem again, we know that: \[ \sum_{k=0}^{10} \binom{10}{k} = (1 + 1)^{10} = 2^{10} \] Thus, \[ \sum_{k=0}^{10} 3 \binom{10}{k} = 3 \cdot 2^{10} \] ### Step 3: Combine the results Now we can combine the results from both sums: \[ \sum_{k=0}^{10} (2^k + 3) \binom{10}{k} = 3^{10} + 3 \cdot 2^{10} \] ### Step 4: Compare with the given expression We are given that: \[ \sum_{k=0}^{10} (2^k + 3) \binom{10}{k} = \alpha \cdot 2^{10} + \beta \cdot 3^{10} \] From our previous result, we can identify: \[ \alpha = 3 \quad \text{and} \quad \beta = 1 \] ### Step 5: Find \( \alpha + \beta \) Now we can find: \[ \alpha + \beta = 3 + 1 = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let ""^(n)C_(r) denote the binomial coefficient of x^(r) in the expansion of (1+x)^(n) . If underset(k=0)overset(10)sum (2^(2)+3k) ""^(n)C_(k)=alpha 3^(10)+beta. 2^(10), alpha, beta in R then alpha+beta is equal to..........

Let 1+sum_(r=1)^(10)(3^(r)C(10,r)+rC(10,r))=2^(10)(alpha4^(5)+beta) where alpha,beta in N and f(x)=x^(2)-2x-k^(2)+1 If alpha,beta lies betweenm the roots of f(x)=0 then find the smalles positive integral value of k

Let 1+sum_(r=1)^(10)(3^rdot^(10)C_r+rdot^(10)C_r)=2^(10)(alpha. 4^5+beta)w h e r ealpha,beta in Na n df(x)=x^2-2x-k^2+1. If alpha,beta lies between the roots of f(x)=0 , then find the smallest positive integral value of kdot

If alpha^(2)=5 alpha-3 beta^(2)=5 beta-3 then the value of (alpha)/(beta)+(beta)/(alpha) is

If (log)_(10)(1028)/(1024)=alpha and(log)_(10)=beta, then the value of (log_(10))_(10)4100 in terms of alpha and beta is equal to a.alpha+9 beta b.alpha+12 beta c.12 alpha+beta d .9 alpha+beta

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)2=beta , then the value of (log)_(10)4100 in terms of alphaa n dbeta is equal to alpha+9beta (b) alpha+12beta 12alpha+beta (d) 9alpha+beta

Let alpha=sum_(k=0)^(n)(((""^(n)C_(k))^(2))/(k+1)) and beta=sum_(k=0)^(n-1)((""^(n)C_(k)^(n)C_(k+1))/(k+2)) .If 5 alpha=6 beta ,then "n" equals________.

If sin32^(@)=k and cos x=1-2k^(2) alpha, beta are the values of x between 0^(@) and 360^(@) with alpha < beta then