Home
Class 12
MATHS
If A+B+C = pi, prove that [[sin^2A,cot...

If A+B+C = `pi`, prove that
`[[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]]`=0

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION AREA UNDER PLANE CURVES DIFFERENTIAL EQUATION

    USHA PUBLICATION|Exercise EXERCISE|89 Videos
  • MODEL QUESTION SET

    USHA PUBLICATION|Exercise MODEL QUESTION SET|692 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , then prove the following. sin^2frac{A}{2}+sin^2frac{B}{2}+sin^2frac{C}{2} =1-2sinfrac{A}{2} cdot sin frac{B}{2} cdot sin frac{C}{2}

Prove that a sinA - b sinB = c sin(A-B)

In Delta ABC prove that sum a^3 sin(B-C)= 0

Prove that sinB/sinA=sin(2A+B)/sinA-2cos(A+B)

If A+B+C=pi , then prove the following. sin2A+sin2B-sin2C=4cosA cdot cosB cdot sinC

If A+B+C=pi , then prove the following. cos^2A+cos^2B+2cosA cdot cosB cdot cos C=sin^2 C

If sinA : sinC = sin(A-B): sin(B-C) prove that a^2,b^2,c^2 are in A.P.

If A+B+C=pi , then prove the following. cosA+cosB+cosC=1+4sinfrac{1}{2}A cdot sin frac{1}[2}B cdot sinfrac{1}{2}C

Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]

In Delta ABC prove that (b^2-c^2)cotA + (c^2-a^2)cotB + (a^2-b^2)cotC = 0

USHA PUBLICATION-MATRICES DETERMINANTS PROBABILITY -EXERCISE
  1. 1.Solve for x: abs ((1,1,x),(p+1,p+1,p+x),(3,x+1,x+2))=0

    Text Solution

    |

  2. Solve [[x+a,b,c],[a,x+b,c],[a,b,x+c]]=0

    Text Solution

    |

  3. If A+B+C = pi, prove that [[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,c...

    Text Solution

    |

  4. Without expanding,show that the following determinant vanishes. abs((2...

    Text Solution

    |

  5. Without expanding,show that the following determinant vanishes. abs ((...

    Text Solution

    |

  6. Without expanding,show that the following determinant vanishes. abs((b...

    Text Solution

    |

  7. Without expanding,show that the following determinant vanishes. abs((6...

    Text Solution

    |

  8. Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

    Text Solution

    |

  9. If a, b and c are all positive real, then prove that minimum value of ...

    Text Solution

    |

  10. Show that: abs((a,a^2,a^3),(b,b^2,b^3),(c,c^2,c^3))=abc(a-b)(b-c)(c-a)

    Text Solution

    |

  11. Prove that: |[a, b, c],[a-b, b-c, c-a ], [b+c, c+a, a+b]|= a^3+b^3+c^3...

    Text Solution

    |

  12. Solve by cramer's rule :2x+3y=6, 4x+6y=12

    Text Solution

    |

  13. If A=[[ 3,-5,],[-4,2,]],show that A^2-5A-14I=O,where I is a unit matri...

    Text Solution

    |

  14. Find the matrix B,if B^2=[[16,0,],[0,16,]].

    Text Solution

    |

  15. If A=[[1,2,],[3,4,]],B=[[-2,3,],[-1,2,]],show that (A+B)^T=A^T+B^T.

    Text Solution

    |

  16. If A=[[2,0,3,],[3,4,5,]],B=[[3,-1,2,],[0,2,3,]]and c=[[2,-3,0,],[1,4,5...

    Text Solution

    |

  17. If A=[[1,2,],[3,4,]],B=[[-2,3,],[-1,2,]],show that (A+B)^T=A^T+B^T.

    Text Solution

    |

  18. If A=[[2,0,3,],[3,4,5,]],B=[[3,-1,2,],[0,2,3,]]and c=[[2,-3,0,],[1,4,5...

    Text Solution

    |

  19. Find the matrix A if A^2=[[17,8,],[8,17,]].

    Text Solution

    |

  20. Verify that (AB)^-1=B^-1A^-1 if A=[[2,3,],[1,-1,]],B=[[0,1,],[3,1,]]

    Text Solution

    |