Home
Class 11
MATHS
If {:((n),(r)):}=(n!)/(k), then K =........

If `{:((n),(r)):}=(n!)/(k),` then K =.......

A

`r !`

B

`(n-n) !`

C

`(n-n) ! R!`

D

`(r(n-1))!`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise LATEST EXAM MCQs|1 Videos
  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise TEXTBOOK ILLUSTRATIONS FOR PRACTICE WORK|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE : 7|11 Videos
  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Sequence and Series (Fill in the blanks )|48 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    KUMAR PRAKASHAN|Exercise NCERT EXEMPLAR PROBLEMS (QUESTION OF MODULE )|11 Videos

Similar Questions

Explore conceptually related problems

((n),(r)) = (""^(n)P_(r))/(K), then K = ......

If ((n),(r)) = ((n),(r+2)), then r = …… ,

if ((n),(r)) + ((n),(r-1)) = ((n + 1),(x)), then x = ....

""_(n)P_r+((n),(r))=.........

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

Evaluate (n!)/(r!(n-r)!) , when n = 5, r = 2.

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......