Home
Class 11
MATHS
((10),(1)) + ((10),(2))+((11),(3))+((12)...

`((10),(1)) + ((10),(2))+((11),(3))+((12),(4))+((13),(5))`= ........

A

`((14),(6))`

B

`((14),(7))`

C

`((13),(6))`

D

`((14),(5))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise LATEST EXAM MCQs|1 Videos
  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise TEXTBOOK ILLUSTRATIONS FOR PRACTICE WORK|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE : 7|11 Videos
  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Sequence and Series (Fill in the blanks )|48 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    KUMAR PRAKASHAN|Exercise NCERT EXEMPLAR PROBLEMS (QUESTION OF MODULE )|11 Videos

Similar Questions

Explore conceptually related problems

((12),(1))+((12),(3))+((12),(5))+.....+((12),(11))=2^(12) .

Show that the three lines with direction cosines (12)/(13),(-3)/(13),(-4)/(13),(12)/(13),(3)/(13),(-4)/(13),(12)/(13) are mutually perpendicular.

If A = {1,2,3} and consider the relation R = {(1,1), (2,2) , (3,3) , (1,2) ,(2,3), (1,3)} . Then R is .......

The value of |(.^(10)C_(4) ^(10)C_(5) ^(11)C_(m)), ( .^(11)C_(6) ^(11)C_(7) ^(12)C_(m+2)), (. ^(12)C_(8) ^(12)C_(9) ^(13)C_(m+4))| is equal to zero when m is

If (10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)+........+(10)(11)^(9)=k(10)^(9) , then k is equal to

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range. (i) {(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)} (ii) {(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)} (iii) {(1,3),(1,5),(2,5)}

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| and C_(ij)=(-1)^(i+j) M_(ij), "where " M_(ij) is a determinant obtained by deleting ith row and jth column then then |{:(C_(11),C_(12),C_(13)),(C_(21),C_(22),C_(23)),(C_(31),C_(32),C_(33)):}|=Delta^(2). If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =5 and Delta =|{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| then sum of digits of Delta^(2) is

|{:(10!,11!,12!),(11!,12!,13!),(12!,13!,14!):}|= . . . . . .

Compute the indicated products: (i) [(a,b),(-b,a)][(a,-b),(b,a)] (ii) [(1),(2),(3)][(2,3,4)] (iii) [(1,-2),(2,3)][(1,2,3),(2,3,1)] (iv) [(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4),(3,0,5)] (v) [(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)] (vi) [(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]