Home
Class 12
MATHS
int0^pisin^7x dx=...

`int_0^pisin^7x dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

You are examine these two statements carefully and select and answer Assertion (A) : int_0^pi sin^7 x dx =2 int_0^(pi//2) sin^7 xdx Reason ( R): sin^7x is an odd function

Solve the integral I=int_0^pisin^2xdx .

Evaluate int_0^(pi/2) sin^7x dx

Evaluate the following integral: int_0^(2pi)cos^7x\ dx

Evaluate the following integral: int_0^pisin^3x(1+2cos)(1+cos x)^2dx

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

IF int_0^a sqrtx dx=2a int_0^(pi//2) sin^3 x dx, find int_a^(a+1) x dx .

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

int_0^a f(a-x) dx=

The value of int_(-pi)^pisin^3xcos^2x\ dx\ is (pi^4)/2 b. (pi^4)/4 c. 0 d. none of these