Home
Class 12
MATHS
Q. if logy=sin^-1 x, show that, (1-x^2)(...

Q. if `logy=sin^-1 x`, show that, `(1-x^2)((d^2y)/dx^2)=x(dy/dx)+y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Q.if log y=sin^(-1)x, show that,(1-x^(2))((d^(2)y)/(dx^(2)))=x((dy)/(dx))+y

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin(2sin^-1x) show that (1-x^2)(d^2y)/(dx^2)= xdy/dx-4y

If y=sin^(-1)x , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0 .

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=tan^(-1)x, show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0