Home
Class 12
MATHS
"If "x^(y)=e^(x-y)," prove that "(dy)/(d...

`"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If x=e^((x)/(y)), prove that (dy)/(dx)=(x-y)/(x log x)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)