Home
Class 12
MATHS
A^1=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1)...

`A^1=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] (A+B)^1=A^1+B^1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

A^(1)=[[3,4-1,20,1]] and B=[[-1,2,11,2,3]](A+B)^(1)=A^(1)+B^(1)

If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (A+B)'=A'+B'

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

If A=[[3,4],[ -1,2],[0, 1]] and B=[[-1, 2, 1],[1,2, 3]] , then verify that (A+B)^(prime)=A^(prime)+B^(prime)

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

If A = [(2,4),(1,3)] and B = [(1,1),(0,1)] then find (A^(-1)B^(-1))

If A= [(3,1),(4,0)] and B=[(4,0),(2,5)] then verify that (AB)^(-1)= B^(-1) A^(-1)