Home
Class 12
MATHS
Let alpha=pi/5 and A=[ [cosalpha, sinalp...

Let `alpha=pi/5` and `A=[ [cosalpha, sinalpha] , [-sinalpha, cosalpha]]` then `B=A^4-A^3+A^2-A` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

let alpha=pi/5 and A=[[cosalpha , sinalpha] , [-sinalpha , cosalpha]] and B=A+A^2+A^3+A^4 then: (A) B is singular (B) B is symmetric (C) B is skew symmetric (D) 0 lt |B| lt 1

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.