Home
Class 12
MATHS
IF alpha,beta are the eccentric angles o...

IF `alpha,beta` are the eccentric angles of the extremities of a focal chord of the ellipse `x^2/a^2+y^2/b^2=1`. Then show that `e cos""(alpha+beta)/2=cos""(alpha-beta)/2`

Answer

Step by step text solution for IF alpha,beta are the eccentric angles of the extremities of a focal chord of the ellipse x^2/a^2+y^2/b^2=1. Then show that e cos""(alpha+beta)/2=cos""(alpha-beta)/2 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If α, β are the eccentric angles of the extremeties of a focal chord of the ellipse (i) e cos (alpha+beta)/(2)=cos (alpha-beta)/(2) (ii) tan (alpha/2)tan (beta/2)=(e-1)/(e+1)

Prove that the equation of the chord joining the points alpha and beta on the ellipse x^2/a^2+y^2/b^2=1 is

Knowledge Check

  • If alpha, beta are the eccentric angles of the extremities of a focal chord of the ellipse x^(2)/16+y^(2)/9, " then "tan""alpha/2tan""beta/2=

    A
    `(sqrt(5)+4)/(sqrt(5)-4)`
    B
    `9/23`
    C
    `(sqrt(5)-4)/(sqrt(5)+4)`
    D
    `(8sqrt(7)-23)/9`
  • If alpha and beta are the eccentric angles of the ends of a focal chord of the ellipse then cos^(2)((alpha+beta)/(2))sec^(2)((alpha-beta)/(2)) =

    A
    `(a^(2)+b^(2))/(a^(2))`
    B
    `(a^(2)-b^(2))/(a^(2))`
    C
    `(a^(2))/(a^(2)+b^(2))`
    D
    `(a^(2))/(a^(2)-b^(2))`
  • If alpha,beta are the ends of a focal chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then its eccentricity e is

    A
    `(1+tan(alpha)/(2)tan(beta)/(2))/(1-tan (alpha)/(2)tan (beta)/(2))`
    B
    `(1-tan(alpha)/(2)tan(beta)/(2))/(1+tan (alpha)/(2)tan (beta)/(2))`
    C
    `(tan(alpha)/(2)tan(beta)/(2)+1)/(tan(alpha)/(2)tan (beta)/(2)-1)`
    D
    `(tan(alpha)/(2)tan(beta)/(2)-1)/(tan (alpha)/(2)tan (beta)/(2)+1)`
  • Similar Questions

    Explore conceptually related problems

    If alpha-beta is constant prove that the chord joining the points alpha and beta on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 touches a fixed ellipse

    If sin(theta+alpha)=a and sin (theta+ beta) , then cos2(alpha-beta)-4ab cos(alpha -beta) =

    If alpha , beta are supplementary angles , then cos^(2)alpha + sin^(2) beta =

    If alpha , beta are complementary angles , then sin^(2) alpha + sin^(2) beta =

    If cos(theta - alpha)=a, cos(theta-beta)=b , then sin^(2)(alpha -beta) + 2abcos(alpha-beta)=0