Home
Class 11
MATHS
Find the values of k if the lines (x-2)/...

Find the values of k if the lines `(x-2)/(1)=(y-3)/(1)=(z-4)/(-k)` and `(x-1)/(k)=(y-4)/(2)=(z-5)/(1)` are coplanar.

A

`k =0`

B

`k =-1`

C

`k =-2`

D

`k = 3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The line (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar if

The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(0) is

The lines (x-3)/(1)=(y-2)/(2)=(z-3)/(-l) and (x-1)/(l)=(y-2)/(2)=(z-1)/(4) are coplanar if value of l is

The lines (x-1)/(a) = (y-2)/(3) = (z-3)/(4) , (x-2)/(3) = (y-3)/(4) = (z-4)/(5) are coplanar. Then a=

If the lines (x-2)/(1) = (y-3)/(1) = (z-4)/(lamda ) and (x-1)/(lamda ) = (y-4)/(2) = ( z -5)/(1) intersect, then

If the lines (x-1)/(2) =(y-2)/(a)=(z-3)/(4) and (x+1)/(b)=(y+2)/(1)=(z-5)/(2) are parallel then then a+b =

The value of k for which the lines (x+1)/(-3)=(y+5)/(2k) =(z-4)/(2) and (x-3)/(3k)=(y-2)/(1)=(z+1)/(7) are perpendicular is

The lines (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect if K equals

The value of k if the lines (x+1)/(-3) = (y+2)/(2k ) = (z-3)/(2) and (x-1)/(3k) = (y+5)/(1) = (z+6)/(7) my be perpendicular