Home
Class 11
MATHS
Consider the lines L (1) : (x +1)/( 3) =...

Consider the lines `L _(1) : (x +1)/( 3) = (y+2)/(1) = (z+1)/(2), L_(2): (x-2)/(1) = (y+2)/(2) = (z-3)/(3)`
The distance of the point (1,1,1) from the plance passing through the point (-1,-2,-1) and whose normal is perpendicular to both the lines `L _(1) and L _(2)` is

A

`(12)/(sqrt65)`

B

`(14)/(sqrt75)`

C

`(13)/(sqrt75)`

D

`(13)/(sqrt65)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the lines L _(1) : (x +1)/( 3) = (y+2)/(1) = (z+1)/(2), L_(2): (x-2)/(1) = (y+2)/(2) = (z-3)/(3) The shortest distance between L _(1) and L _(2) is

Consider the lines L _(1) : (x +1)/( 3) = (y+2)/(1) = (z+1)/(2), L_(2): (x-2)/(1) = (y+2)/(2) = (z-3)/(3) The unit vector perpendicular to both L _(1) and L _(2) is

If the lines (x-2)/(1) = (y-3)/(1) = (z-4)/(lamda ) and (x-1)/(lamda ) = (y-4)/(2) = ( z -5)/(1) intersect, then

The point on the line (x-2)/(1) = (y+3)/(-2) = (z+5)/(-2) at a distance of 6 from the point (2, -3, -5) is

The angle between the lines (x-1)/(2)=(y-2)/(1)=(z+3)/(2) and (x)/(1)=(y)/(1)=(z)/(0) is

The lines (x-3)/(1)=(y-2)/(2)=(z-3)/(-l) and (x-1)/(l)=(y-2)/(2)=(z-1)/(4) are coplanar if value of l is

If the lines (x-1)/(2) =(y-2)/(a)=(z-3)/(4) and (x+1)/(b)=(y+2)/(1)=(z-5)/(2) are parallel then then a+b =