Home
Class 11
MATHS
If f(x) = {(3x^(2) + 12x - 1, -1 le x le...

If `f(x) = {(3x^(2) + 12x - 1, -1 le x le 2),(" "37-x, 2 lt x le 3):}`, show that
f(x) is increasing in [-1, 2]

A

f(x) is increasing on [-1,2]

B

f(x) is continous on [-1,3]

C

f(2) doesn 't exist

D

f(x) has the maximum value at x=2

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I ) (MATRIX MATCHING TYPE QUESTIONS)|3 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I ) (LINKED COMPREHENSION TYPE QUESTIONS)|6 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I ) (STRAIGHT OBJECTIVE TYPE QUESTIONS)|74 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-II (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS ) )|2 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {(3x^(2) + 12x - 1, -1 le x le 2),(" "37-x, 2 lt x le 3):} , show that f'(x) does not exist at x = 2

If f(x) = {(3x^(2) + 12x - 1, -1 le x le 2),(" "37-x, 2 lt x le 3):} , show that f(x) has maximum value at x = 2.

If f: [0,3] to [0,3] is defined by: f(x) = {{:(1+x,0 le x le 2),(3-x, 2 lt x le 3):} , then show that f[0,3] sube [0,3] and find fof.

f(x) = {{:([x], if, -3 lt x le -1),(|x|, if, -1 lt x lt 1),(|[-x]|, if, 1 le x le 3):} , then {x: f(x) ge 0} =

If f(x)={{:(x^(2) " for " 0 le x le 1),(sqrt(x) " for "1 le x le 2):} then int_(0)^(2) f(x)dx=

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=

If f (x) = {{:((x ^(2))/( 2 ) "," , 0 le x lt 1), (2x ^(2) - 3x + (3)/(2) "," ,1 le x le 2):} then discuss the continuity of f,f'and f'' on [0,2].

If the function f is defined by f (x) = {x^(2){:( 3x- 2 "," x gt 3), (-2"," -2 le x le 2), (2 x + 1 "," x lt -3):} then find the values, if exist, of f (-2), f(-4), f (-7).

Two functions are defined as under: f(x) = {{:(x+1, x le 1),(2x+1, 1 lt x le 2):}, g(x) ={{:(x^(2), -1 le x lt 2),( x+2, 2 le x le 3):} . Find fog and gof.