Home
Class 11
MATHS
f(x)=x^(2)-4|x|andg(x)={{:("min"[f(t):-6...

`f(x)=x^(2)-4|x|andg(x)={{:("min"[f(t):-6letlex}","x in[-6,0],),("max"{f(t):0letlex}","x in (0,6],):}`
g(x) is constant in

A

`(-2,0)`

B

`(-4,4)`

C

`(0,6)`

D

`(0,4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I ) (INTEGER TYPE QUESTIONS)|3 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE -II) (STRAIGHT OBJECTIVE TYPE QUESTIONS)|54 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I ) (MATRIX MATCHING TYPE QUESTIONS)|3 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-II (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS ) )|2 Videos

Similar Questions

Explore conceptually related problems

f(x)=x^(2)-4|x|andg(x)={{:("min"[f(t):-6letlex}","x in[-6,0],),("max"{f(t):0letlex}","x in (0,6],):} g(x) is strictly increasing in

f(x)=x^(2)-4|x|andg(x)={{:("min"[f(t):-6letlex}","x in[-6,0],),("max"{f(t):0letlex}","x in (0,6],):} Minimum value of g(x) is

f(x) = (tan x)/(x) , x ne , f(0 ) = 1 , f(x) at x = 0 is

f(x) = ( x^(2))/(|x|) , x ne 0 f (0) = 0 at x = 0 , f is

Let g(x) =1+x-[x] and f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x gt 0):} , then (f(g(2009)))/(g(f(2009)) =