Home
Class 12
MATHS
If sqrt (1-y^2) + sqrt (1-x^2) =a(x-y)...

If ` sqrt (1-y^2) + sqrt (1-x^2) =a(x-y)`, then show that `dy/dx = sqrt (frac{1-y^2}{1-x^2})`

Answer

Step by step text solution for If sqrt (1-y^2) + sqrt (1-x^2) =a(x-y), then show that dy/dx = sqrt (frac{1-y^2}{1-x^2}) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differentiation

    CHETANA PUBLICATION|Exercise Exercise|127 Videos
  • DIFFERENTIAL EQUATIONS

    CHETANA PUBLICATION|Exercise EXERCISE|254 Videos
  • Indefinite Integration

    CHETANA PUBLICATION|Exercise Exercise|221 Videos

Similar Questions

Explore conceptually related problems

If sqrt (1- x^2 ) + sqrt (1- y^2 ) = a(x-y), then show that dy/dx = sqrt ( frac{1- y^2 }{1- x^2 } )

If sqrt (1-x^2) + sqrt (1-y^2) = a(x-y) , show that dy/dx = sqrt (frac{1-y^2}{1-x^2})

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then show that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2)))

If sqrt (y+x) + sqrt (y-x) = c , then show that dy/dx = frac{y}{x} - sqrt (frac{y^2}{x^2} -1)

If x^y = e^(x-y) , then show that dy/dx = frac{log x}{(1+ log x)^2}

If y= x^(x^(x...)) , then show that dy/dx = frac{y^2}{x(1-log y)}

If e^y = y^x , then show that dy/dx = frac{(log y)^2}{log y -1}

If y= sqrt (log x + sqrt (log x + sqrt (log x + ......oo))) , then show that dy/dx = frac{1}{x(2y-1)}

If y= sqrt (cos x + sqrt (cos x + sqrt (cos x + ......oo))) , then show that dy/dx = frac{sin x}{1-2y}

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3) , prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6) where (-1 < x <,1 and -1 < y < 1.)