Home
Class 12
MATHS
If sqrt (1-x^2) + sqrt (1-y^2) = a(x-y...

If `sqrt (1-`x^2`)` + `sqrt (1-`y^2`) = a(x-y), then show that dy/dx = `sqrt (`frac{1-`y^2`}{1-`x^2`}`)`

Promotional Banner

Topper's Solved these Questions

  • Differentiation

    CHETANA PUBLICATION|Exercise Exercise|127 Videos
  • DIFFERENTIAL EQUATIONS

    CHETANA PUBLICATION|Exercise EXERCISE|254 Videos
  • Indefinite Integration

    CHETANA PUBLICATION|Exercise Exercise|221 Videos

Similar Questions

Explore conceptually related problems

If sqrt (1-y^2) + sqrt (1-x^2) =a(x-y) , then show that dy/dx = sqrt (frac{1-y^2}{1-x^2})

If sqrt (1-x^2) + sqrt (1-y^2) = a(x-y) , show that dy/dx = sqrt (frac{1-y^2}{1-x^2})

If sqrt (y+x) + sqrt (y-x) = c , then show that dy/dx = frac{y}{x} - sqrt (frac{y^2}{x^2} -1)

If x^y = e^(x-y) , then show that dy/dx = frac{log x}{(1+ log x)^2}

If y= x^(x^(x...)) , then show that dy/dx = frac{y^2}{x(1-log y)}

If e^y = y^x , then show that dy/dx = frac{(log y)^2}{log y -1}

If y= sqrt (log x + sqrt (log x + sqrt (log x + ......oo))) , then show that dy/dx = frac{1}{x(2y-1)}

If y= sqrt (cos x + sqrt (cos x + sqrt (cos x + ......oo))) , then show that dy/dx = frac{sin x}{1-2y}

If x= sqrt ( a^( sin^(-1) t) ) and y= sqrt ( a^( cos^(-1) t) ), then show that dy/dx = -(y/x)