Home
Class 12
MATHS
If e^x + e^y = e^(x+y) , show that dy/dx...

If `e^x` + `e^y` = `e^(x+y)` , show that dy/dx = - `e^(y-x)`

Promotional Banner

Topper's Solved these Questions

  • Differentiation

    CHETANA PUBLICATION|Exercise Exercise|127 Videos
  • DIFFERENTIAL EQUATIONS

    CHETANA PUBLICATION|Exercise EXERCISE|254 Videos
  • Indefinite Integration

    CHETANA PUBLICATION|Exercise Exercise|221 Videos

Similar Questions

Explore conceptually related problems

If e^x + e^y = e^(x+y) , then show that dy/dx = - e^(y-x)

If x = e^(x/y) , then show that dy/dx = frac{x-y}{x log x}

If x^y = e^(x-y) , then show that dy/dx = frac{log x}{(1+ log x)^2}

Solve the following: If x = e^ sin 3t , y= e^cos 3t , then show that dy/dx = - frac{y log x}{x log y}

If y=1+ xe^y , then show that dy/dx = frac{e^y}{2-y}

If e^y\ (x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^y = y^x , then show that dy/dx = frac{(log y)^2}{log y -1}

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to