Home
Class 8
MATHS
If x + frac(1)(x) = 4 then let's show th...

If `x + frac(1)(x) = 4` then let's show that `x^2 + frac(1)(x^2) = 14` and `x^4 + frac(1)(x^4) = 194`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p - frac(1)(p) = m then let's show that (p + frac(1)(p))^2 = m^2 + 4

Let's try to prove 27x^3 + frac(1)(8x^3) = 189 if 2x + frac(1)(3x) = 4

Let's find the value of x^3 + frac(1)(x^3) + 2 if 3x + frac(3)(x) = 2

Let's write the value of 27x^3 - frac(1)(27x^3) if x - frac(1)(9x) = 1

Using formula let's show that. (2a + frac(1)(a))^2 = (2a - frac(1)(a))^2 + 8

Let's solve : frac(1)(3)(x-2) + frac(1)(4) (x + 3) = frac(1)(5)(x + 4) + 15

Let's write the value of x^3 + frac(1)(x^3) by calculation if x + frac(1)(x) = 5

Let's resolve into factors: x^2-(a + frac(1)(a)) x + 1

f(x) = sin^-1 frac(2x)(1+x^2) then

If x = -frac(3)(8) then find the value of 2x +5, x + frac(3)(8) , 5 - (-x).