Home
Class 11
MATHS
If g(f(x))= |sinx | and f(g(x))=(sin sqr...

If `g(f(x))= |sinx |` and `f(g(x))=(sin sqrt(x))^(2)`, then

A

`f(x)=sin^(2)x, g(x)=sqrt(x)`

B

`f(x)=sin x, g(x)=|x|`

C

`f(x)=x^(2), g(x)= sin sqrt(x)`

D

f and g cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If g[f(x)]=|sinx|, f[g(x)]=(sinsqrtx)^(2) then

If g(x) =1+sqrt(x) and f(g(x)) =3+2sqrt(x)+x , then f(x)=

Suppose that g(x)= 1 +sqrt(x) and f(g(x))=3+2sqrt(x)+x , then f(x) is

If f(x)=sin(sinx) an f f'(x) +tan xf'(x)+g(x)=0 , then g(x) is :

f(x)=(1)/(2)-tan((pi x)/(2)), -1 lt x lt 1 and g(x)=sqrt(3+4x-4x^(2)) then domain of (f+g) is

If u=f(x^3),v=g(x^2),f'(x)=cosx, and g'(x)=sinx, then (du)/(dv) is