Home
Class 11
MATHS
Let g(x)=1+x-[x] and f(x)= {:{(-1", "x l...

Let `g(x)=1+x-[x]` and `f(x)= {:{(-1", "x lt 0),(0 ", "x=0),(1", "x gt 0):}`. Then for all `x, f(g(x))` is equal to ( where `[.]` represents the greatest integer function)

A

x

B

1

C

`f(x)`

D

`g(x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x) =1+x-[x] and f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x gt 0):} , then (f(g(2009)))/(g(f(2009)) =

Let g(x)=1+x-[x] and f(x)=-1 if x lt 0 =0 if x=0 then f[g(x)]= =1 if x gt 0

Find Lt_(x to 0)f(x) where f(x)={{:(x-1,if gt0),(0, if x=0),(x+1, if x gt 0):}

The value of int_(1)^(a)[x] f' (x) dx, a gt 1 , where [x] denotes the greatest integer not exceeding x is

Find Lt_(xto0)f(x) where f(x)=f(x)={{:(x-1" if "xlt1),(0" if "x=0),(x+1" if "xgt0):}

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then

f(x)={{:( a+(Sin[x])/(x)"," , x gt 0),(2",",x=0),(b+[(Sinx-x)/(x^(3))]",", x lt 0):} where [.] denots the greates integer function . If f(x) is continuous at x=0 then b=

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),( Sinx, 0le xle pi ):} where [.] denotes the greatest functions The exhaustive domain of g(f(x)) is