Home
Class 11
MATHS
If f(x)=(e^(x)+e^(-x))/(2) then the inve...

If `f(x)=(e^(x)+e^(-x))/(2)` then the inverse of `f(x)` is

A

`log_(e)(x + sqrt(x^(2)+1))`

B

`log_(e)sqrt(x^(2)+1)`

C

`log_(e)(x + sqrt(x^(2)-1))`

D

`log_(e) ( x-sqrt(x^(2)-1))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(e^(x) + e^(-x))/2 , then the inverse function of f(x) is:

If e^(x) + e^(f(x)) =e , then domain of f(x) is:

If f(x)=a^(x).e^(x^(2)) then find f'(x) .

If f(x)=log_(e(x))((x^(2)+e)/(x^(2)+1)) , then the range of f(x) is

Let f(x)=(x)/(e^(x)-1)+(x)/(2)+1, then f is

If f(x)=int_(x)^(x+1) e^(-t^(2)) dt , then the interval in which f(x) is decreasing is

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

If f(x) = a^x.e^(x^2) then find f'(x)