Home
Class 11
MATHS
If f(x)=sin x + cos x, g(x)=x^(2)-1, the...

If `f(x)=sin x + cos x, g(x)=x^(2)-1`, then `g(f(x))` is invertible in the domain

A

`[0, pi/2]`

B

`[- pi/4, pi/4]`

C

`[ -pi/2, pi/2]`

D

`[0, pi]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = sinx + cosx, g(x) =x^(2)-1 . Then g(f(x)) is invertible for x in

If f(x)=2x-1, g(x)=x^(2) , then (3f-2g)(x)=

If f(x)=sin(sinx) an f f'(x) +tan xf'(x)+g(x)=0 , then g(x) is :

If g(f(x))= |sinx | and f(g(x))=(sin sqrt(x))^(2) , then

If f(x) = [x - 8] " & " g(x) = f(f(x)) AA x > 16 then g^1(x) equals

Let f: X rarrY , f(x)= sin x + cos x + 2 sqrt(2) be invertible. Then which X rarr Y is not possible ?

If f(x)=1+1//x, g(x)=sqrt(1-x^(2)) , then the domain of f(x)-g(x) is

If f(x)=(1+ tan x) [1+ tan(pi/4 - x)] and g(x) is a function with domain R, then int_(0)^(1) x^(3) g o f (x) dx=