Home
Class 11
MATHS
If f(x)=ax^(5)+bx^(3)+cx+d is odd then...

If `f(x)=ax^(5)+bx^(3)+cx+d` is odd then

A

`a=0`

B

`b=0`

C

`c=0`

D

`d=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

a) The number of elements in the range of a constant function. (b) If f(x)=ax^(5) + bx^(3) + cx +d is an odd function, then the value of d is: ( c) If f: R to R defined by f(x)=3x-4 , then f^(-1)(5) = ( d) If f: R^(+) to R such that f(x) = log_(5)x , then f^(-1)(-1) = Then arrange the above values in ascending order:

If f(x) =ax^(5) + bx^(3) + cx +d is an odd function, then d=

If alpha, beta, gamma are the zeros of the polynomial f(x) = ax^(3) + bx^(2) + cx + d then (alpha)^2 + (beta)^2 + (gamma)^2 = ………….

If alpha, beta, gamma are the zeros of the polynomial f(x) = ax^(3) + bx^(2) + cx + d then 1/(alpha) + 1/(beta) + 1/(gamma) = ………….

If f(x)=ax^(7)+bx^(3)+cx-5, a, b, c are real constants, and f(-7)=7 , then the range of f(7)+17 cos x is

If int (x sqrt(x) -1)/(sqrt(x) -1) dx = ax^(2) + bx^(3//2) + cx + d then ascending order of a, b, c, is

If f: R to R is defined by f(x) = x^(2)-3x+2 and f(x^(2)-3x-2) =ax^(4) + bx^(3) + cx^(2) +dx +e , then a+b+c+d+e =

If 1, -2, 3 are the roots of ax^(3) + bx^(2) + cx + d = 0 then the roots of ax^(3) + 3bx^(2) + 9cx + 27d = 0 are

If 2, - 2, 4 are the roots of ax^(3) + bx^(2) + cx + d = 0 then the roots of 8ax^(3) + 4bx^(2) + 2cx + d = 0 are