Home
Class 11
MATHS
If f(x)={:{(x^(2) sin.(pi x)/(2)",",|x|l...

If `f(x)={:{(x^(2) sin.(pi x)/(2)",",|x|lt1,),(x|x|",",|x|ge1,):}` then `f(x)` is

A

an even function

B

an odd function

C

a periodic function

D

neither even nor odd

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Define f(x) = {{:(x^(2)+bx+c , ",",x lt 1),(x,",",x ge 1):} . If f(x) is differentiable at x = 1, then (b - c) =

If alpha and beta are such that the function f (x) defined by f (x) = {:{(alphax^(2) - beta",","for"|x|lt 1),((_1)/(|X|)",","for"|x|ge1):} is differentiable everywhere, then the ordered pair (alpha,beta) =

If f(x)={:{(x^(2)",","for",x ge 0),(x",","for",x lt 0):} , then fof(x) is given by

If f(x)={{:(x^(3)+1",",x lt0),(x^(2)+1",", x ge0):}, g(x)={{:((x-1)^(1//3)",", xlt1),((x-1)^(1//2)",", x ge1):} then (gof)(x)=

If the function f is defined by f(x)={{:(x+2",",x gt 1),(2",",-1 le x le 1),(x-1",",-3 lt x lt-1):} then find the values of (v) f(-5)

If f(x)= {{:(x " for "x lt 1),(x-1 " for "x ge1):} then int_(0)^(2)x^(2)f(x)dx=

If f(x)={{:(,1,(x lt 0)),(,2x+1,(x le 1)),(,3x,(x gt 1)):}" then "underset(x to 1)"Lt" f(x)=

f(x)={:{(x+1,x le 1),(2x+1,1 lt x le 2):} and g(x)={:{(x^(2)",",-1le x lt2),(x+2",",2 le x le 3):} The domain of the function f(g(x)) is

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=