Home
Class 11
MATHS
The range of the function f(x)=(e^(x)-e^...

The range of the function `f(x)=(e^(x)-e^(|x|))/(e^(x)+e^(|x|))` is

A

`(-oo,oo)`

B

`[0,1)`

C

`(-1, 0]`

D

`(-1,1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(e^(7x)-e^(x))/(e^(4x))=

(e^(5x)+e^(x))/(e^(3x))=

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=

Integrate the functions x^(2)e^(x)

int(e^(x)-e^(-2x))/(e^(2x)+e^(-2x))dx

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

The function f(x)=(In(pi+x))/(In(e+x)) is