Home
Class 11
MATHS
Let f(x)=Sec^(-1)[1+cos^(2)x] where [.] ...

Let `f(x)=Sec^(-1)[1+cos^(2)x]` where `[.]` denotes the greatest integer function
I : Domain of `f(x)` is R
II : Range of f(x) is `{Sec^(-1)1, Sec^(-1)2}`

A

domain of f is R

B

domain of f is [1, 2]

C

domain of f is [2, 1]

D

range of f is `{sec^(-1)1, sec^(-1)2}`

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of cosec^(-1)[1+sin^(2)x] , where [.] denotes the greatest integer function

If f(x)=(sin ([x]pi))/(x^(2)+x+1) , where [.] denotes the greast integer function, then

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then

Let R=(2+sqrt3)^(2n) and f=R-[R] where [ ] denotes the greatest integer function , then R(1-f)=

The range of the function f(x)=[sinx+cosx] (where [x] denotes the greatest integer function) is

If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest integer function, then

The range of sin^(-1)[x^(2)+1/2] + cos^(-1)[x^(2)- 1/2] , where [.] denotes the greatest integer function, is