Home
Class 11
MATHS
Two functions are defined as under: f(...

Two functions are defined as under:
`f(x) = {{:(x+1, x le 1),(2x+1, 1 lt x le 2):}, g(x) ={{:(x^(2), -1 le x lt 2),( x+2, 2 le x le 3):}`.
Find fog and gof.

A

1

B

2

C

4

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={:{(x+1,x le 1),(2x+1,1 lt x le 2):} and g(x)={:{(x^(2)",",-1le x lt2),(x+2",",2 le x le 3):} The domain of the function f(g(x)) is

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),( Sinx, 0le xle pi ):} where [.] denotes the greatest functions The exhaustive domain of g(f(x)) is

f(x) = {{:([x], if, -3 lt x le -1),(|x|, if, -1 lt x lt 1),(|[-x]|, if, 1 le x le 3):} , then {x: f(x) ge 0} =

Show that f(x)={{:(x^(2),if, 0 le x le 1),(x ,if, 1 le x le 2):} is continuous on [0,2]

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),(Sinx 0le xle pi ):} where [.] denotes the greatest functions The range of g(f(x)) is

Check the continuity of function defined by f(x)={{:(4-x^(2),if, x le0),(x-5,if, 0 lt x le1),(4x^(2)-9, if,1 lt x lt 2),(3x+4,if,x ge 2):} at the points x=0, and 2.

Is the function f, defined by f(x) = {(x^2, if x le1),(x, if x > 1):} continuous on R?