Home
Class 11
MATHS
The period of the function f(x) =[6x + 7...

The period of the function `f(x) =[6x + 7] + cos pi x - 6x`, where [.] denotes the greatest integer function, is

A

3

B

`2pi`

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is:

The range of the function: f(x) = tan^(-1)[x], -pi/4 le x le pi/4 where [.] denotes the greatest integer function:

The range of the function f(x)=[sinx+cosx] (where [x] denotes the greatest integer function) is

int_(0)^(pi) [cot x] dx , where [*] denotes the greatest integer function, is equal to

If the period of the function f(x)= sin (sqrt([n])x) where [n] denotes the greatest integer less than or equal to n is 2pi , then

Lt_(x to oo) ([x])/(x) (where[.] denotes greatest integer function )=

The period of 3x - [3x] is (where [.] denote greatest integer function le x )