Home
Class 11
MATHS
The period of f(x)=[x]+[2x]+[3x]+[4x]+.....

The period of `f(x)=[x]+[2x]+[3x]+[4x]+.....+[nx] - (n(n+1))/(2)x`, where `n in N` , is ( where [.] erpresents greatest integer function)

A

n

B

1

C

`1/n`

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of 3x - [3x] is (where [.] denote greatest integer function le x )

Let f(x)=(2x(sin x + tanx))/(2[(x+21pi)/(pi)]-41),x != n pi , then f is ( where [.] represents greatest integer function)

Let f: [-3, 3] rarr R where f(x)=x^(2) + sin x + [(x^(2)+2)/(a)] be an odd function then the value of a is ( where [.] represents greatest integer function)

The range of f(x)=(sin pi [x^(2)+1])/(x^(4)+1) is , where [.] is greatest integer function

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is:

If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest integer function, then

Period of cos(x+2x + 3x +…+n x) is

If f(x)= cos [pi ^(2) ] x+ cos [-pi ^(2) ] x, where [x] stands for the greatest integer functions , then