Home
Class 11
MATHS
If [x] stands for the greatest integer f...

If [x] stands for the greatest integer function , then `[1/2 + (1)/(1000)] + [1/2 + (2)/(1000)]+.....+[1/2 + (999)/(1000)]=`

A

498

B

499

C

500

D

501

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] represents greatest integer le x then int_(1)^(3//2) [2x +1]dx=

If [.] denotes the greatest integer function, then find the value of [sin^(-1)[x^(2)+1/2]+cos^(-1)[x^(2)-1/2]]

If [x] denotes the greatest integer less than or equal to x then int_(1)^(oo) [(1)/(1+x^(2))]dx=

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then

If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest integer function, then

Integrate the functions sin^(-1)((2x)/(1+x^(2)))

Let R=(2+sqrt3)^(2n) and f=R-[R] where [ ] denotes the greatest integer function , then R(1-f)=

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

If f(x)= cos [pi ^(2) ] x+ cos [-pi ^(2) ] x, where [x] stands for the greatest integer functions , then