Home
Class 11
MATHS
If f(x) = cos (log(e) x), then f(x)f(y) ...

If `f(x) = cos (log_(e) x)`, then `f(x)f(y) -1/2[f(x/y) + f(xy)]` has value

A

-1

B

`1//2`

C

-2

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = cos(log x) , then f(x^(2)) . f(y^(2)) -1/2[f(x^(2)y^(2)) +f(x^(2)/y^(2))]=

If f(x)=sin(logx) , then f(xy)+f(x//y)-2f(x)cos (logy)=

If f(x) = log_(x)(lnx) then f'(x) at x = e is

IF f(x)=log(tan e^x) , then find f'(x).

If f(x)=|log_e(x||, then f'(x) equals.

If f(x)=cos(logx) , then show that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If y=f(x)=(2x-1)/(x-2), then f(y)=