Home
Class 11
MATHS
f(x) = {{:([x], if, -3 lt x le -1),(|x|,...

`f(x) = {{:([x], if, -3 lt x le -1),(|x|, if, -1 lt x lt 1),(|[-x]|, if, 1 le x le 3):}`, then `{x: f(x) ge 0}`=

A

`(-1, 3)`

B

`[-1, 3)`

C

`(-1, 3]`

D

`[-1, 3]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find real contans, a b so that the function 'f' given by f(x)={{:(sinx , if, x le0),(x^(2)+a, if, 0 lt x lt 1),(bx+3,if, 1 le x le 3),(-3,if,x gt 3):} is continuous on R.

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=

Two functions are defined as under: f(x) = {{:(x+1, x le 1),(2x+1, 1 lt x le 2):}, g(x) ={{:(x^(2), -1 le x lt 2),( x+2, 2 le x le 3):} . Find fog and gof.

Check the continuity of function defined by f(x)={{:(4-x^(2),if, x le0),(x-5,if, 0 lt x le1),(4x^(2)-9, if,1 lt x lt 2),(3x+4,if,x ge 2):} at the points x=0, and 2.

If f(x) = {{:(3^(-x)+1, for, -1 le x lt 0),(tan(x//2), for, 0 le x le pi),(x/(x^(2)-2) ,for, pi le x le 6):} , then sqrt(f(0) + f(pi//6) + 1/5f(5) -1/23)= ……………..

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),( Sinx, 0le xle pi ):} where [.] denotes the greatest functions The exhaustive domain of g(f(x)) is