Home
Class 11
MATHS
If f={(-2, 4), (0, 6), (2, 8)} and g={(-...

If `f={(-2, 4), (0, 6), (2, 8)} and g={(-2, -1), (0, 3), (2, 5)}`, then `((2f)/(3g)+(3g)/(2f))(0)=`

A

`1//12`

B

`25//12`

C

`5//12`

D

`13//12`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f={(a, 0), (b, 2), (c, -3)}, g={(a, -1), (b, 1), (c, 2)} then 2f-3g=

If f={(a, 1), (b, -2), (c, 3)}, g={(a, -2), (b, 0), (c, 1)} then f^(2)+g^(2)=

If f={(a, 0), (b, -2), (c, 3)}, g={a, -2), (b, 0), (c,1)} then f//g=

If f={(4,5),(5,6), (6,-4)} and g={(4,-4),(6,5),(8,5)} then find: (i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) sqrt(f) , (ix) f^(2) , (x) f^(3)

If f(x)=2x-1, g(x)=x^(2) , then (3f-2g)(x)=

If f(0)=0, f(1)=1, f(2)=2 and f(x)=f(x-2)+f(x-3) " for " x=3, 4, 5, ………….., then f(9)=

If f(x)=x^(2), g(x)=x^(2)-5x+6 then (g(2)+g(2)+g(0))/(f(0)+f(1)+f(-2))=

If f^(1)(x) =g(x) and g^(1)(x) =-f (x) for all x and f(2) = 4 =f^(1) (2) then f^(2) (4) +g^(2)(4) is