Home
Class 11
MATHS
If the function f: [2, oo) rarr [-1, oo)...

If the function `f: [2, oo) rarr [-1, oo)` is defined by `f(x)=x^(2)-4x+3` then `f^(-1)(x)=`

A

`2-sqrt(x+1)`

B

`2+ sqrt(x+1)`

C

`(2-sqrt(x+1))/(5)`

D

`(2+sqrt(x+1))/(5)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

f: [0, oo) rarr [4, oo) is defined by f(x)=I^(2)+4 then f^(-1)(13)=

If f[1, oo)rarr[1, oo) is defined by f(x)=2^(x(x-1)) then f^(-1)(x)=

If f: [1, oo) rarr [5, oo) is given by f(x) = 3x + (2)/(x) , then f^(-1) (x) =

If f:[1,oo) to [1,oo) is defined by f(x) = 2^(x(x-1)) then find f^(-1)(x) .

If f:[1, oo)rarr[2, oo) is given by f(x)=x+(1)/(x) then f^(-1)(x)=

If f:[0, oo) to [0,oo) is defined by f (x) = (x)/(1+ x) , then f is

If f:R rarrR is defined by f(x)=x^(2)+3x+2, then f(x-1)=

If f: [2, oo) rarr B defined by f(x)=x^(2)-4x+5 is a bijection, then B=