Home
Class 11
MATHS
If f[1, oo)rarr[1, oo) is defined by f(x...

If `f[1, oo)rarr[1, oo)` is defined by `f(x)=2^(x(x-1))` then `f^(-1)(x)=`

A

`(1/2)^(x(x-1))`

B

`1/2 (1+ sqrt(1+4 log_(2)x))`

C

`1/2 (1-sqrt(1+4log_(2)x))`

D

`1/2 (1 pm sqrt(1+4 log_(2)x))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f:[1,oo) to [1,oo) is defined by f(x) = 2^(x(x-1)) then find f^(-1)(x) .

If the function f: [2, oo) rarr [-1, oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

f: [0, oo) rarr [4, oo) is defined by f(x)=I^(2)+4 then f^(-1)(13)=

If f:[1,infty) to [1, infty) is defined by f(x) =2^(x(x+1)) then f^(-1)(x) =

If f:[1, oo)rarr[2, oo) is given by f(x)=x+(1)/(x) then f^(-1)(x)=

If f: [1, oo) rarr [5, oo) is given by f(x) = 3x + (2)/(x) , then f^(-1) (x) =

If f:Rrarr(0,oo) defined by f(x)=5^(x), "then find "f^(-1)(x)

If f:R rarrR is defined by f(x)=(2x+1)/(3) then f^(-1)(x)=

If f:[0, oo) to [0,oo) is defined by f (x) = (x)/(1+ x) , then f is