Home
Class 11
MATHS
Let f(x)=x^(2)- x+1, x ge 1//2, then the...

Let `f(x)=x^(2)- x+1, x ge 1//2`, then the solution of the equation `f^(-1)(x)=f(x)` is

A

`x=1`

B

`x=2`

C

`x = 1/2`

D

`x=0`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = x^(2) -2ax +a( a+1) ,f ,[a, infty ) to [a, infty ) . If one of the solution of the equation f(x) = f^(-1) (x) is 5049 , then the other may be

Let f(x)=(x)/(e^(x)-1)+(x)/(2)+1, then f is

Let f(x)=(x+1)^(2)-1, x ge -1 . Then the set {x:f(x)=f^(-1)(x)} is

If f(x)=(x+1)^(2)-1, x ge -1 then the set S={x, f(x)=f^(-1)x} is

Let f(x) =(x+1)^2-1,x ge -1 then {x: f(x) =f^(-1)(x) } =

If f(x) = 1 + x + x^(2) + …… for |x| lt 1 then show that f^(-1)(x) = (x-1)/(x) .

Let f(x) = (x + x^(2) + ...+ x^(n)-n)/(x -1), x ne 1 , the value of f (1)