Home
Class 11
MATHS
Let f: X rarrY , f(x)= sin x + cos x + 2...

Let `f: X rarrY , f(x)= sin x + cos x + 2 sqrt(2)` be invertible. Then which `X rarr Y` is not possible ?

A

`[ pi/4, (5 pi)/(4)] rarr [ sqrt(2), 3 sqrt(2)]`

B

`[ - (3pi)/(4), pi/4] rarr [ sqrt(2), 3 sqrt(2)]`

C

`[ - (3pi)/(4), (3 pi)/(4) ] rarr [ sqrt(2), 3 sqrt(2)]`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x ) = cos 3x + sin sqrt(3) x is

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

Let f(x) = sinx + cosx, g(x) =x^(2)-1 . Then g(f(x)) is invertible for x in

The function f(x)=sin ( log (x+ sqrt(1+x^(2)))) is

Let f:[-10, 10] rarr R , where f(x)= sin x +[x^(2)//a] , be an addfunction. Then the set of values of parameter a is/are

The period of f(x ) = |sin (x )/(2) | + | cos x| is

The period of f(x) = cos (x /3) + sin (x/2) is

Let f(x) = ab sin x+ b sqrt( 1-a^2) cos x+c , where |a| lt 1, b gt 0 then