Home
Class 11
MATHS
The function f: R rarr R satisfies the c...

The function `f: R rarr R` satisfies the condition `a f(x-1) + b f(-x)=2(|x|+1`. If `f(-2)=5` and `f(1)=1`, then `8(b-a)=` _______

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function y=f(x) satisfying the condition f(x+1//x) =x^(3)+1//x^(3) is:

A function f: R rarr R satisfies sin x cosy (f(2x2y))-f(2x-2y))= cosxsiny(f(2x+2y))+f(2x-2y)) If f'(0)=1/2 , then

If a function f statisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2)) (x ne 0) then domain of f(x) is

If f(x)=Ax^(2) +Bx satisfies the conditions f^(1)(1)=8 and int_(0)^(1) f(x)dx=8/3 , then

If f(x) satisfies the functional equation x^(2).f(x)+f(1-x)=2x-x^(4) , then f(1/3)=

If f(x) satisfies the relation f(x+ y) = f ( x) + f( y ) for all x, y in R and f(1) = 5 then

Consider the function y = f(x) satisfying the condition f(x+ 1/x)=x^(2) + (1)/(x^(2))( != 0) . Then the

If f:R rarr R^(+) such that f(x)=(1//3)^(x), then f^(-1)(x)=

f: R^(+) rarr R is continuous function satisfying f(x/y)=f(x) - f (y) AA x, y in R^(+) . If f'(1) = 1, then

A function f satisfies the condition f(x) - f'(x) +f'(x) + f''(x) + ......, where f(x) is a differentiable function indefinitely and dash denotes the order of derivative . If f(0) =1 , then f(x) is