Home
Class 11
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=sqrt(sin^(-1)(2x)+pi/6)` for real-valued x is

A

`[ - 1/4, 1/2]`

B

`[ - 1/2, 1/2]`

C

`( - 1/2, 1/9)`

D

`[ - 1/4, 1/4]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x) =sqrt(sin^(-1)x) is:

Domain of sqrt(sin^(-1)(2x) + pi/6) is

The domain of the function f(x)=sqrt(x-1)+sqrt(6-x) is

The domain of the function f(x) = sqrt("cosec"x-1) is:

The domain of the function f(x)=sqrt(Sec^(-1)((1-|x|)/(2))) is

The domain of definition of the function y=(1)/(log_(10)(1-x))+sqrt(x+2) is

The domain of the function f(x)=sqrt([(2x-1)/(x^(2)-10x-11)]) is

The domain of the function f(x)=(1)/(sqrt(|x|-x))

Find the domain of the real function f(x)=sqrt(16-x^(2))