Home
Class 11
MATHS
The function f(x)=(sec^(-1)x)/(sqrt(x-[x...

The function `f(x)=(sec^(-1)x)/(sqrt(x-[x]))`, where [x] denotes the greatest integer less or equal to x, is defined for all `x in `

A

R

B

`R-{(-1, 1) uu {n|n in N}}`

C

`R^(+)-(0, 1)`

D

`R^(+)-{n|n in N}`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the period of the function f(x)= sin (sqrt([n])x) where [n] denotes the greatest integer less than or equal to n is 2pi , then

The domain of the funciton f(x) = sqrt((4-x^2)/([x]+2)) where [x] denotes the greatest interger not more than x, is

The range of the function f(x)=[sinx+cosx] (where [x] denotes the greatest integer function) is

Evaluate int_(0)^(100)e^(x-[x])dx where [ ] denotes the greatest integer function.

If [x] denotes the greatest integer less than or equal to x then int_(1)^(oo) [(1)/(1+x^(2))]dx=

If f(x)=(sin ([x]pi))/(x^(2)+x+1) , where [.] denotes the greast integer function, then

int_(0)^(pi) [cot x] dx , where [*] denotes the greatest integer function, is equal to