Home
Class 11
MATHS
If alpha in (0, pi/2) , then sqrt(x^(2)+...

If `alpha in (0, pi/2)` , then `sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x))` is always greater than or equal to `(x != 0, -1)`

A

2

B

1

C

`2 tan alpha`

D

`2 Sec^(2) alpha`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x to 0)(1+tan^(2) sqrt(x))^(1//2x)

If x in ( 0 , (pi)/(2)) " then " int sqrt(1 + sin x ) dx =

If 0ltxlt1 then tan^(-1)(sqrt(1-x^(2))/(1+x)) is equal to

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

If alpha, beta are the roots of x^(2)+x+1=0 , then alpha^(-2)+beta^(-2) is

x^(2) + x + 1/sqrt(2)=0

x^(2) + x/sqrt(2)+1=0

If alpha, beta are the rootsof 6x^(2)-4sqrt2 x-3=0 , then alpha^(2)beta+alpha beta^(2) is