Home
Class 11
MATHS
Let f:R-{(3)/(2) } toR.f(x)= (3x+ 5)/(2x...

Let` f:R-{(3)/(2) } toR.f(x)= (3x+ 5)/(2x-3)`
`Let f_2 (x)= f(f(x)) , f_3 (x) = f(f_2(x)) ,.....f_x(x) = f(f_(n-1) (x)),"then"f_(2008)(x)+f_(2009)(x)= `

A

`(2x^(2)-5)/(2x-3)`

B

`(2x^(2)-5)/(2x+3)`

C

`(2x^(2)-5)/(2x+3)`

D

`(2x^(2)+5)/(2x-3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2f(x) = f'(x) and f(0) = 3 then f(2) =

Let f(x) = (x+1)/(x-1), fof(x) =f^(2)(x), fofof(x) =f^(3)(x), fofofof(x) =f^(4)(x) ……. Then f^(2008) =

If f(x + y) = f(x) f(y) AA x, y and f(5) = 2, f'(0) = 3 then f'(5) =

If f: R - {0} to R is defined by f(x) = x^(3)-1/(x^3) , then S.T f(x) + f(1//x) = 0 .

If f(x).f((1)/(x))=f(x)+f((1)/(x)) , and f(3)=82, then int(f(x))/(x^(2)+1)dx=

For x in R, x != 0, x != 1 , let f_(0)(x)= (1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)), n = 0, 1, 2,.... Then the value of f_(100)(3)+f_(1)(2/3)+f_(2)(3/2) is equal to

Let f(x) = (3)/(4) x+1 . f^(n) (x) be defined as f^(2) (x)= f(f(x)), and " for " n ge 2 f^(n+1) (x) = f(f^(n) (x)) ." if" lambda underset( n to infty ) Lim f^(n) (x) . then

Let f(x) = (1)/(2) [f( xy ) + f((x)/(y)) ]AA x, y in R ^(+) such that f(1) = 0, f^(1) (1)=2 Now answer the following f(x) - f(y ) =

If f ((x + 2y)/(3)) = (f (x) + 2f (y))/( 3) AA x, y in R and f '(0) = 1, f (0) = 2, then find f (x).