Home
Class 11
MATHS
The range of f(x) = [ sin x+ [ tan x+ [...

The range of `f(x) = [ sin x+ [ tan x+ [secx ]]] , x in (0, (pi )/(4)) ` where [.] denotes greatest integer function is

A

[0, 1]

B

[-1, 0, 1]

C

{1}

D

{0}

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x to oo) ([x])/(x) (where[.] denotes greatest integer function )=

int_(0)^(pi) [cot x] dx , where [*] denotes the greatest integer function, is equal to

The period of 3x - [3x] is (where [.] denote greatest integer function le x )

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is:

If f(x)=(sin ([x]pi))/(x^(2)+x+1) , where [.] denotes the greast integer function, then

The range of f(x)=(sin pi [x^(2)+1])/(x^(4)+1) is , where [.] is greatest integer function

The range of the function: f(x) = tan^(-1)[x], -pi/4 le x le pi/4 where [.] denotes the greatest integer function:

Find the number of points where f(x) = [sin x + cos x] , x in [0,2 pi] is not continous . ([.] denotes the greatest integer function ).