Home
Class 11
MATHS
Let f.g.h be real valued functions defi...

Let f.g.h be real valued functions defined on the interval [0,1] by `f( x) = e^(x^(2)) +e^(-x^(2)) , g (x)= x.e^(x^(2)) +e^(-x^(2)) and h (x) = x^(2) ,e^(x^(2)) +e^(-x^(2)) ` If a,b,c denote respectively the absolute max. values of f.g.h on [0,1] then

A

`a=b` and `c != b`

B

`a=c` and `a != b`

C

`a != b` and `c != b`

D

`a=b=c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f, g, h be real valued functions defined on the interval [0, 1] by f(x) = e^(x^(2)) + e^(-x^(2)) , g(x) = x e^(x^(2)) + e^(-x^(2)) and h(x) = x^(2) e^(x^(2)) + e^(-x^(2)) . If a, b, c respectively denote the absolute maximum of f, g and h on [0, 1] then show that a =b=c.

If f: R to R defined by f(x) =(e^(x^(2)) -e^(-x^(2)))/(e^(x^(2)) +e^(-x^(3))) , then f is

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

If f and g are real valued functions defined by f(x) = 2x -1 and g(x) = x^(2) then find (ii) (f+g+2)(x).

If f and g are real valued functions define by f(x)=2x-1 and g(x)=x^(2) then find (iii) (f+g+2)(x)

If f (x) = e ^(x) , g (x) = Sin ^(-1) x and h (x) =f (g (x)), then (h'(x))/(h (x))=