Home
Class 11
MATHS
Let f(x) = f1 (x) - 2 f2( x) , " wher...

Let `f(x) = f_1 (x) - 2 f_2( x) , " where where " `
` f_1(x) ={:{( min {x^(2) , |x| },|x| le 1),( min {x^(2) , |x| } , |x| gt 1):} `
and ` f_2( x) = {:{( min {x^(2) ,|x| },|x|gt1),( min {x^(2) ,|x| } , |x| le 1 ) :} and " let " g(x) = {:{( min {f(t) : -3t le x, -3le x lt0}),( min {f(t) : 0le t le x, 0le x le 3 }):}`
For ` x in (-1, 0 ) , f(x) +g(x) ` is

A

`x^(2)-2x+1`

B

`x^(2)+2x-1`

C

`x^(2)+2x+1`

D

`x^(2)-2x-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=

If f is defined by f (x) = {:{ (x , " for " 0 le x lt 1) , ( 2 -x , " for " x le 1 ) :} then at x =1

If f(x) = min (x^(2) ,x, sgn ( x^(2) +4x + 5) ) then the value of f(2) is equal to

f(x) = {{:(x " if " x le 1),(log x " if " x gt 1 ):} " then f (x) at x = 1 is "

If f(x) = {(3x^(2) + 12x - 1, -1 le x le 2),(" "37-x, 2 lt x le 3):} , show that f(x) is increasing in [-1, 2]