Home
Class 11
MATHS
Consider two funtions f(x) = {:{( [x], -...

Consider two funtions `f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),(Sinx 0le xle pi ):} ` where [.] denotes the greatest functions
The number of integral points in the range of g(f(x)) is

A

[ sin 3 sin 1]

B

`[sin 3, 1] uu {-2, -1, 0}`

C

`[sin 3, 1] uu {-2 , -1 }`

D

`[sin 1, 1]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),( Sinx, 0le xle pi ):} where [.] denotes the greatest functions The exhaustive domain of g(f(x)) is

The range of the function: f(x) = tan^(-1)[x], -pi/4 le x le pi/4 where [.] denotes the greatest integer function:

f(x)={:{(x+1,x le 1),(2x+1,1 lt x le 2):} and g(x)={:{(x^(2)",",-1le x lt2),(x+2",",2 le x le 3):} The domain of the function f(g(x)) is

Two functions are defined as under: f(x) = {{:(x+1, x le 1),(2x+1, 1 lt x le 2):}, g(x) ={{:(x^(2), -1 le x lt 2),( x+2, 2 le x le 3):} . Find fog and gof.

f(x) = {{:([x], if, -3 lt x le -1),(|x|, if, -1 lt x lt 1),(|[-x]|, if, 1 le x le 3):} , then {x: f(x) ge 0} =

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then

Show that f(x)={{:(x^(2),if, 0 le x le 1),(x ,if, 1 le x le 2):} is continuous on [0,2]

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=