Home
Class 11
MATHS
If f^(1)(x) =g(x) and g^(1)(x) =-f (x) f...

If `f^(1)(x) =g(x) and g^(1)(x) =-f (x)` for all x and `f(2) = 4 =f^(1) (2)` then `f^(2) (4) +g^(2)(4)` is

A

32

B

24

C

64

D

48

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|13 Videos
  • DIFFRENTATION

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I)(LINKED COMPREHENSION TYPE QUESTIONS)|11 Videos
  • DIFFERENTIATION

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS |26 Videos
  • DIRECTION COSINES & RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|36 Videos

Similar Questions

Explore conceptually related problems

If f(x) =|x-2| and g(x) = f(f(x)) , then for x gt 20, g(x) =

If f(x)=2x-1,g(x)=(x+1)/(2) for all x in R , find (gof)(x)

If f(x) = 2x-1, g(x) = (x+1)/(2) for all x in R , then find (gof) (x).

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following If the solution of F(x) -G (x) =0 are x_1,x_2, x_3 --------- x_n Where x in [0,5 pi] then

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following If F :R to [-2,2] then F(x) is

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following Domain and range of H(x) are

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following Which of the following is correct

f(x) and g(x) are two differentiable functions on [0,2], such that f^('')(x) - g^('') (x) = 0,f' (1) = 4,g'(1) = 2, f(2) = 9, g(2) = 3, then f(x) = g(x) at x = 3//2 is